Asian Resonance

Stability Theorems for Impulsive Functional Differential Equations

Please Send one passport size photo in our mail id

Sanjay K. Srivastava

Designation..... Department of Applied Sciences, Beant College of Engineering and Technology, Gurdaspur, Punjab.

Neeti Bhandarl

Designation..... Department of Applied Sciences, Punjab Technical University Jalandhar,

Punjab.

Neha Wadhwa

Designation..... Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar.

Abstract

In this paper, sufficient conditions are derived for asymptotic stability and uniformly asymptotic stability for impulsive functional differential equation using piecewise continuous differential equation.

Keywords: Stability, Impulsive Functional Differential Equation, Liapunov functional

Introduction

Consider the impulsive functional differential equation

$$\begin{cases} x'(t) = f(t, x_t), & t \neq t_k \ t \ge t_0 \\ \Delta x = I_k(t, (x_t^-)), & t = t_k, k \in Z^+ \end{cases}$$
(1)

 $\begin{array}{ll} \left(\Delta x = I_k(t, (x_t^{-})), & t = t_k, k \in Z^+ \end{array} \right) \\ \text{Where} & f:J \times PC \to R^n, \Delta x = x(t) - x(t^{-}), t_0 < t_1 < \cdots t_k < t_{k+1} < \\ \cdots, \text{With } t_k \to \infty \text{ as } k \to \infty \text{ and } I_k: J \times S(\rho) \to R^n, \text{ where } J = [t_0, \infty), \\ S(\rho) = \{x \in R: |x| < \rho\}. PC = PC([-\tau, 0], R^n) \text{ denotes the space of piecewise right continuous functions } \varphi: [-\tau, 0] \to R^n \text{ with sup-norm } \\ \|\varphi\|_{\infty} = sup_{-\tau \leq s \leq 0} |\varphi(s)| \text{ and the norm } \|\varphi\|_2 = (\int_{-\tau}^0 |\varphi(s)|^2 ds)^{1/2} \text{ where } \tau \text{ is a positive constant, } \|.\| \text{ is a norm in } R^n. x_t \in PC \text{ is defined by } x_t(s) = x(t+s) \text{ for } -\tau \leq s \leq 0. x'(t) \text{ denotes the right-hand derivative of } x(t). Z^+ \text{ is the set of all positive integers, } \end{array}$

Let f(t, 0) = 0 and J(0) = 0, then x(t) = 0 is the zero solution of (1). Set $PC(\rho) = \{\varphi \in PC : \|\varphi\|_{\infty} < \rho\}, \forall \rho > 0.$

Let σ be the initial time, $\forall \sigma \in R$, the zero solution of (1) is said to be

- a) stable if , for each $\sigma \ge t_0$ and $\varepsilon > 0$, there is a $\delta = \delta(\sigma, \varepsilon) > 0$ such that , for $\varphi \in PC(\delta)$, a solution $x(t, \sigma, \varphi)$ satisfies $|x(t, \sigma, \varphi)| < \varepsilon$ for $t \ge t_0$.
- b) uniformly stable if it is stable and δ in the definition of stability is independent of σ
- c) asymptotically stable if it is stable and, for each $t_0 \in R_+$, there is an $\eta = \eta(t_0) > 0$ such that, for $\varphi \in PC(\eta), x(t, \sigma, \varphi) \to 0$ as $t \to \infty$
- d) uniformly asymptotically stable if it is uniformly stable and there is an $\eta > 0$ and , for each $\varepsilon > 0$, a $T = T(\varepsilon) > 0$ such that , for $\varphi \in PC(\eta), |x(t, \sigma, \varphi)| < \varepsilon$ for $t \ge t_0 + T$

Definition 1.2

A functional $V(t, \varphi): J \times PC(\rho) \to R_+$ belong to class $v_o(.)$ (a set of Liapunov like functional) if

- a) *V* is continuous on $[t_{k-1}, t_k) \times PC(\rho)$ for each $k \in Z_+$, and for all $\varphi \in PC(\rho)$ and $k \in Z_+$, the limit $\lim_{(t,\varphi)\to(t_k^-,\varphi)} V(t,\varphi) = V(t_k^-,\varphi)$ exists.
- b) *V* is locally Lipchitzian in φ in each set in $PC(\rho)$ and V(t, 0) = 0 The set \Re is defined by $\Re = \{W \in C(R_+, R_+): \text{strictly increasing and } W(0) = 0$

Main Results

Theorem 1

Assume that there exist $V_{1,}V_2 \in v_0(.)$, $W_{1,}W_2, W_3, W_4 \in \Re$ such that

- I. $W_1(\varphi(0)) \le V(t,\varphi) \le W_2(\varphi(0))$, where $V(t,\varphi) = V_1(t,\varphi) + V_2(t,\varphi)$
- II. $V(t_k, x + I_k(t_k, x)) V(t_k^-, x) \le 0$
- III. $aV_1'(t, x_t) + bV_2'(t, x_t) \le -\lambda(t) W_3 (inf \{x(s) : t h \le s \le t\})$
- IV. $pV_1'(t, x_t) + qV_2'(t, x_t) \le 0$

where
$$a^2 + b^2 \neq 0$$
, $p^2 + q^2 \neq 0$ and $\int_0^{\infty} \lambda(s) ds = \infty$

- E: ISSN No. 2349-9443
- (A) Suppose further that there is a $\mu = \mu(\gamma) > 0$ for each $0 < \gamma < H_1$ such that $pV'_1(t, x_t) + qV'_2(t, x_t)$ $\leq -\mu V'_1(t, x_t)$ (2) if $x(t) \geq \gamma$. If either (i) a > 0, b > 0 or (ii) $p \geq 0, q$ > 0 hold, then the zero solution of (1) is uniformly and asymptotically stable.
- (B) The same is concluded if $pV'_1(t, x_t) + qV'_2(t, x_t) \le \mu V'_1(t, x_t)$ holds in place of (2) and if either (*i*) a > 0, b> 0 or (ii)p > 0, q > 0.

Proof

We first prove the uniform stability. For given $\varepsilon > 0$, we may choose a $\delta = \delta(\varepsilon) > 0$ such that $W_2(\delta) < W_1(\varepsilon)$. For any

 $\sigma \ge t_0$ and $\varphi \in PC_{\delta}$, let $x(t, \sigma, \varphi)$ be the solution of (1). We will prove that

 $\begin{array}{cc} x(t,\sigma,\varphi) \leq \varepsilon, & t \geq \sigma \\ \mathsf{Let} & x(t) = x(t,\sigma,\varphi) \text{ and } V_1(t) = V_1(t,x_t), V_2(t) = \\ V_2(t,x_t) \text{ and } V(t) = V(t,x_t). \end{array}$ Then by assumption (iv),

 $V'(t, x_t) \le 0$, $\sigma \le t_{k-1} \le t < t_k$, $k \in Z^+$ and so V(t) is non increasing on the interval of the form $[t_{k-1}, t_k)$. From condition (ii)

$$V(t_k) - V(t_k^-) = V(t_k, x(t_k^-) + I_k(t_k, x(t_k^-))) - V(t_k^-, x(t_k^-)) \le 0$$

Thus V(t) is non increasing on $[\sigma, \infty)$. We have $W_1(x(t)) \le V(t) \le V(\sigma) \le W_2(\sigma) < W_1(\varepsilon), t \ge \sigma$

This implies with the monotonicity of $W_1, |x(t)| < \epsilon$ for $t \ge \sigma$ and so that the zero solution of (1) is uniformly stable.

To show asymptotic stability, for a given $t_0 \in R_+$ and a fixed $0 < H_2 < H_1$, take $\eta = \eta(t_0) = \delta(t_0, H_2) > 0$, where δ is that in the definition of stability and for a given $\phi \in PC(\eta)$, let $x(t) = x(t,\sigma,\phi)$ be a solution of (1). Suppose for contradiction that $x(t) \not\rightarrow 0$ as $t \rightarrow \infty$. Then there is a sequence $\{T_i\}$ and an $\epsilon_0 > 0$ with $T_i \rightarrow \infty$ and $|x(T_i)| > \epsilon_0$. Define $\epsilon_2 = W_2^{-1}(\frac{W_1(\epsilon_0)}{2})$ then there is a sequence $\{s_i\}$ with $s_i \rightarrow \infty$ and $|x(s_i)| < \epsilon_2$. Otherwise there is an $S \geq t_0$ such that $|x(t)| \ge \epsilon_2$ for $t \ge S$ and

 $|x(t)| \ge \varepsilon_2$ for $t \ge 3$ $av_1(t) + bv_2(t) <$

$$av_1(s + h) + bv_2(s + h) - \int_{s+h}^t \lambda(s) W_4(\inf\{|\mathbf{x}(\sigma)|: s - h\}) ds$$

 $\sigma \leq sds + \frac{1}{2} \sum_{k=1}^{n} \sum_{k=1}^{n$

$$S+h\leq tk\leq t[Vtk-S+h\leq tk\leq t[Vtk-Vtk-)]$$

$$\leq av_1(S+h) + bv_2(S+h) - W_4(\varepsilon_2) \int_{S}^{t} \lambda(s) ds \to -\infty$$

as $t \to \infty,$ which contradicts either $av_1(t) + bv_2(t) \geq 0$ if (i) holds or

 $av_{1}(t) + bv_{2}(t) \geq -|a|W_{2}(H_{2}) - |b|(pv_{1}(t_{0}) + qV_{2}(t_{0}))/q$

if (ii) holds.

In Case (A), we may assume $T_{i-1} < s_i < T_i$ by choosing and renumbering if necessary. Then we can take a sequence $\{t_i\}$ such that $s_i < t_i < T_i, |x(t_i)| = \epsilon_2$ and $|x(t)| > \epsilon_2$ for $t_i < t \leq T_i$.

Then $pv_1(T_i) + qv_2(T_i) - (pv_1(T_{i-1}) + qv_2(T_{i-1}))$

Asian Resonance

$$\leq pv_1(T_i) + qv_2(T_i) - (pv_1(t_i) + qv_2(t_i)) + \sum_{i=1}^{n} [V(t_k) - V(t_k^{-i})]$$

$$+ \sum_{t_{i} \le t_{k} \le T_{i}} [V(t_{k}) - V(t_{k}^{-})]$$

$$\le -\mu(\varepsilon_{2})(v_{1}(T_{i}) - v_{1}(t_{i}))$$

$$\le -\mu(\varepsilon_{2})W_{1}(\varepsilon_{0})/2$$
and a contradiction follows from
$$pv_{1}(T_{n}) + qv_{2}(T_{n})$$

$$= pv_{1}(T_{1}) + qv_{2}(T_{1})$$

$$+ \sum_{i=2}^{n} [pv_{1}(T_{i}) + qv_{2}(T_{i})$$

$$- (pv_{1}(T_{i-1})$$

$$+ \sum_{T_{i-1} \le t_{k} \le T_{i}} [V(t_{k}) - V(t_{k}^{-})]$$

$$\leq pv_1(T_1) + qv_2(T_1) - \frac{(n-1)\mu(\varepsilon_2)W_1(\varepsilon_0)}{2} \to -\infty$$

as $n \to \infty$

In Case (B), we may assume $s_{i-1} < T_i < s_i$ and take $\{t_i\}$ with $T_i < t_i < s_i$, $|x(t_i)| = \varepsilon_2$ and $|x(t)| > \varepsilon_2$ for $T_i \le t < t_i$ so that $pv_1(t_i) + qv_2(t_i) - (pv_1(t_{i-1}) + qv_2(t_{i-1}))$

$$\begin{aligned} & (t_i) + qv_2(t_i) - (pv_1(t_{i-1}) + qv_2(t_{i-1})) \\ & \leq pv_1(t_i) + qv_2(t_i) - (pv_1(T_i) + qv_2(T_i)) \\ & + \sum_{T_i \leq t_k \leq t_i} [V(t_k) - V(t_k^-)] \\ & \leq \mu(\varepsilon_2)(v_1(t_i) - v_1(T_i)) \\ & \leq -\mu(\varepsilon_2)W_1(\varepsilon_2)/2 \end{aligned}$$

This implies a contradiction by the same argument as in case (A)

Therefore, $x(t) \to 0$ as $t \to \infty$. The proof is complete. **Theorem 2.**

Assume that there exist $V_1, V_2 \in v_0(.)$ and $W_1, W_2, W_3, W_4 \in \Re$ such that

a) $W_1|\varphi(0)| \le V(t,\varphi) \le W_2|\varphi(0)|$ where $V(t,\varphi) = V_1(t,\varphi) + V_2(t,\varphi)$

b)
$$V(t_k, x + I_k(t_k, x)) - V(t_k^-, x) \le 0, k \in Z^+$$

c) $aV'_{1}(t, x_{t}) + bV'_{2}(t, x_{t}) \le -\lambda(t)W_{3}(\inf\{|x(s)|; t-h \le s \le t\})$ and $pV'_{1}(t, x_{t}) + qV'_{2}(t, x_{t}) \le 0$

Where $a^2 + b^2 \neq 0$, $p^2 + q^2 \neq 0$ and

 $\lim_{S \to \infty} \int_{t}^{t+S} \lambda(s) ds = \infty \text{ uniformly in } t \in R_{+}$

A. Suppose that there is a $\mu = \mu(\gamma) > 0$ for each $0 < \gamma < H_1$ such that $pV'_1(t, x_t) + qV'_2(t, x_t)$

$$\leq -\mu V_{1}(t, x_{t}) \tag{3}$$

$$p \ge 0, q \ge 0$$
 hold, then the zero solution of (1)

B. The same is concluded if (3) is replaced by $pV'_{1}(t, x_{t}) + qV'_{2}$ $\leq \mu V'_{1}(t, x_{t})$

And if either (i) $a > 0, b \ge 0$ or (ii) $p > 0, q \ge 0$ hold **Proof**

Uniform Stability can be proven as stability in Theorem 1.

Set $\eta = \delta(H_2)$ for a fixed $0 < H_2 < H_1$ and δ in the definition of uniform stability. For given $t_0 \in R_+, \varphi \in C_\eta$,

 $h \leq$

E: ISSN No. 2349-9443

let $x(t) = x(t, \sigma, \varphi)$ be a solution of (1). Let $\varepsilon > 0$ be given and take $\delta = \delta(\varepsilon) > 0$ of uniform stability. Define $\delta_1 = W_2^{-1}(\frac{W_1(\delta)}{2})$. Choose a $S = S(\varepsilon) > 0$ with

$$\int_{t}^{t+S} \lambda(s) ds > 2(|a|W_2(H_2) + |b|W_3(H_2))/W_4(\delta_1)$$

For $t \in R_+$ and an integer $N = N(\varepsilon) \ge 1$ with $N\mu(\delta_1)W_1(\delta)/2 > 2(|p|W_2(H_2) + |q|W_3(H_2))$ $T = T(\varepsilon) = N(S + 2h).$ Define Suppose, for contradiction, that $||x_t|| \ge \delta$ for $t_0 \le t \le t_0 + T$. In Case (A), for $1 \le i \le N$, there is a

 $+(i-1)(S+2h) \le s_i \le t_0 + (i-1)(S+2h) + h + S$ With $|x(s_i)| < \delta_1$. Otherwise $|x(t)| \ge \delta_1$ on this interval and, for $I_i = [t_0 + (i-1)(S+2h) + h, t_0 + (i-1)(S+2h)]$ 2h+h+S, v1t=V1(t,xt) and v2t=V2(t,xt), we have

 $-2(|a|W_2(H_2) + |b|W_3(H_2))$ $\leq av_1(t_0 + (i-1)(S+2h) + h + S) + bv_2(t_0)$ +(i-1)(S+2h)+h+S) $(-av_1(t_0 + (i-1)(S+2h) + h) + bv_2(t_0 + (i-1)(S+$ 2h+h))

 $\leq -\int \lambda(t)W_4(\inf\{|x(s)|: t-h \leq s \leq t\})ds$

 $\leq -W_4(\delta_1) \int \lambda(t) < -2(|a|W_2(H_2) + |b|W_3(H_2))$ This inequality also holds true as per condition (ii) a contradiction.

From the supposition , for $1 \le i \le N$, there is a $t_0 + (i - 1)(S + 2h) + h + S \le T_i \le t_0 + i(S + 2h)$ Such that $|x(T_i)| \ge \delta$. Thus, there is an $s_i < t_i < T_i$ with $|x(t_i)| = \delta_1$ and $|x(t)| > \delta_1$ for $t_i < t \le T_i$. We obtain $pv_1($

$$\begin{aligned} (t_0 + i(S + 2h)) + qv_2(t_0 + i(S + 2h)) \\ &- (pv_1(t_0 + (i - 1)(S + 2h))) \\ &+ qv_2(t_0 + (i - 1)(S + 2h))) \end{aligned}$$

 $\leq pv_1(T_i) + qv_2(T_i) - (pv_1(t_i) + qv_2(t_i))$ $\leq -\mu(\delta_1)(v_1(T_i) - v_1(t_i)) \leq -\mu(\delta_1)W_1(\delta)/2$ And

 $-2(|p|W_2(H_2) + |q|W_3(H_2)) \le pv_1(t_0 + N(S + 2h)) +$ $qv_2(t_0 + N(S + 2h)) - (pv_1(t_0) + q(v_2(t_0)))$ $=\sum_{i=1}^{N} (pv_1(t_0 + i(S + 2h)) + qv_2(t_0 + i(S + 2h))) -$ (pv1t0+i-1S+2h+qv2t0+i-1S+2h)

 $\leq -N\mu(\delta_1)W_1(\delta)/2 < -2(|p|W_2(H_2) + |q|W_3(H_2)),$ This inequality also holds true as per condition (ii) a contradiction.

In Case (B), we can take, for $1 \le i \le N$, $t_0 + (i - i)$ $|x(si)| < \delta 1$, $12h+S+h\leq si\leq t0+i2h+S$ with $t_0 + (i-1)(2h+S) \le T_i \le t_0 + (i-1)(2h+S) + h$ with $|x(T_i)| \ge \delta$ and $T_i < t_i < s_i$ with $|x(t_i)| = \delta_1$, $|x(t)| > \delta_1$ for $T_i \leq t < t_i$ so that

 $pv_1(t_0 + i(S + 2h)) + qv_2(t_0 + i(S + 2h))$ $-(pv_1(t_0+(i-1)(S+2h)))$ $+ qv_2(t_0 + (i - 1)(S + 2h)))$ $\leq pv_1(t_i) + qv_2(t_i) - (pv_1(T_i) + qv_2(T_i))$ $\leq \mu(\delta_1) \big(v_1(t_i) - v_1(T_i) \big) \leq -\mu(\delta_1) W_1(\delta)/2$ This inequality also holds true as per condition (ii)

a contradiction follows from this as in case(A)

Consequently $||x_{t'}|| < \delta$ for some $t_0 \le t' \le t_0 + T$ and $|x(t)| < \varepsilon$ for $t \ge t_0 + T$. This completes the proof. Corollary

If there are $V_1, V_2 \in v_0(.)$ and $W_1, W_2, W_3, W_4 \in \Re$ satisfying

a)
$$W_1|\varphi(0)| \le V(t,\varphi) \le W_2|\varphi(0)|$$

b)
$$0 \le V(t, \varphi) \le W_3(||\varphi||)$$
 where $V(t, \varphi) =$

 $V_1(t,\varphi) + V_2(t,\varphi)$

Asian Resonance

 $V(t_k, x + I_k(t_k, x)) - V(t_k, x) \le 0$ C) r.) ≤ 0

d)
$$V_1(t, x_t) + c_1 V_2(t, x_t) \le U'_1(t, x_t) \le$$

 $V'_{1}(t, x_{t}) + c_{2}V'_{2}(t, x_{t}) \leq (t_{1})W(t_{1})W(t_{2})$

$$-\lambda(t)W_4(inf\{|x(s)|; t-n \le s \le t\})$$

Where $c_1 \ne c_2$ either $c_1 \ge 0$ or $c_2 \ge 0$ and

 $\lim_{s\to\infty} \int_t^{t+s} \lambda(s) ds = \infty$ uniformly in $t \in R_+$ Then the zero solution of (1) is uniformly asymptotically

V

We may assume that $c_1 > c_2$. Then $c_1 \ge 0$, if $c_2 = 0$

 $V'_{1}(t, x_{t}) + c_{1}V'_{2}(t, x_{t}) \le 0 \le -V'_{1}(t, x_{t})$ And the conditions of theorem 2(A ii) are satisfied. If $c_1 > 0$

$$\begin{aligned} \dot{Y}_{1}(t,x_{t}) + c_{1}V_{2}'(t,x_{t}) &\leq (c_{1} - c_{2})V_{2}'(t,x_{t}) \\ &\leq -(\frac{(c_{1} - c_{2})}{c_{1}})V_{1}'(t,x_{t}) \end{aligned}$$

Implies uniform stability by Theorem 2(A ii).

Example Consider the impulsive differential equation

x'(t) = -a(t)f(x(t)) + b(t)g(x(t-h)) $x(t_k) - x(t_k^{-}) = c_k x(t_k^{-}), \ k \in \mathbb{Z}^+$

 $a: R_+ \to R_+, \quad b: R_+ \to R, \quad f, g: R \to R$ Where are continuous, xf(x) > 0, for $x \neq 0$, $|g(x)| \le c|f(x)|$ for c > 0 and $g(x) \neq 0$ for $x \neq 0$, $|1+c_k| \leq 1, k \in Z^+$ and $\sum_{k=1}^{\infty} [1 - |1 + c_k|] = \infty$

If $\int_{t}^{t+h} |b(s)| ds$ is bounded, $a(t) - ac|b(t+h)| \ge 0$ For some $\alpha > 1$, and for some $1 \le \beta \le \alpha$, $\lambda(t) = a(t) - \alpha$ $\beta c |b(t+h)| + (\beta - 1)|b(t)|$ satisfies

$$\lim_{S \to \infty} \int_{t} \lambda(s) ds = \infty$$

Uniformly in $t \in R_+$, then the zero solution is uniformly asymptotically stable.

Proof Let $V = V_1 + V_2$ where $V_1(t, \phi) = |\phi(0)|, V_2(t, \phi) =$

 $\int_{-h}^{0} |b(t+s+h)| |g(\varphi(s)| \, ds$

Then $V_2(t,\varphi) \leq \int_t^{t+h} |b(s)| ds W_3(||\varphi||)$ for some function $W_3 \in \Re$

 $V_1(t_k, x + c_k x) - V_1(t_k, x) = |(1 + c_k)x| - |x| =$ And $[1 - |1 + c_k|]V(t_k, x)$

Let $\lambda_k = 1 - |1 + c_k|$; then $\sum_{k=1}^{\infty} \lambda_k = \infty$. We check that for any $\alpha > 0$, there is a $\beta > 0$ such that $V(t, x_t) \ge \alpha$ implies $V_1(t, x_t) \ge \beta$.

Otherwise we must have $\liminf_{t\to\infty} V_1(t, x_t) = 0$

We let $V(t) = V_1(t, x_t) + V_2(t, x_t)$

 $V(t_k) - V(t_k^{-}) = V_1(t_k, x(t_k^{-}) + c_k x(t_k^{-})) -$ Then $V_1(t_k^{-}, x(t_k^{-})) \le 0$

$$V'_{1}(t, x_{t}) + \beta V'_{2}(t, x_{t})$$

$$\leq -(\mathbf{a}(t) - \beta \mathbf{c}|\mathbf{b}(t+h)|) |f(\mathbf{x}(t))|$$

$$- (\beta - 1)|\mathbf{b}(t)| |g(\mathbf{x}(t-h))|$$

$$+ \sum_{0 \leq t_k \leq t} V(t_k) - V(t_k^{-})$$

 $\leq -\lambda(t)W_4(\inf\{|\mathbf{x}(s)|: t-h \leq s \leq t\})$ If $||\mathbf{x}_t|| \le H$ for a fixed $0 < H < \infty$ and some function W_4 . If $\beta = 1$, for $\alpha \neq 1$ $V'_{1}(t, x_{t}) + \alpha V'_{2}(t, x_{t}) \leq 0$

E: ISSN No. 2349-9443

Asian Resonance

If $\beta > 1$ $V'_{1}(t, x_{t}) + 1 V'_{2}(t, x_{t}) \le 0$

The conditions of the corollary are satisfied and hence the zero solution is uniformly asymptotically stable. **References**

- D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability Theory and Applications, Horwood, Chicestar, 1989.
- V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulse Differential Equations, World Scientific, Singapore 1989.
- J. Shen, Z. Luo, Impulsive stabilization of functional differential equations via Liapunov functionals, J. Math. Anal.Appl. 240 (1999) 1–15.
- 4. Katsumasa Kobayashi, Stability Theorems for Functional Differential Equations, Nonlinear

Analysis, Theory. Methods & Applicorions, Vol. 20, No. 10, pp. 1183-I 192, 1993.

- 5. Burton T. & Hatvani L., Stability theorems for nonautonomous functional differential equations by Liapunov functionals, Tokoku math. J. 41, 65-104 (1989).
- Lakshmikantham V., Leela S. & Sivasundaram S., Lyapunov functions on product spaces and stability theory of delay differential equations, J. math. Analysis Applic. 154, 391-402 (1991).
- L. Hatvani, On the asymptotic stability for nonautonomous functional differential equations by Liapunov functionals, Trans. Amer. Math. Soc. 354 (2002) 3555–3571.